3.289 \(\int \frac{B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{9}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=111 \[ -\frac{6 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 B \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{6 B \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 C \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-6*B*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*C*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*B*Sin[c + d*x])/(5*d*Cos[c
 + d*x]^(5/2)) + (2*C*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (6*B*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0988952, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {3010, 2748, 2636, 2639, 2641} \[ -\frac{6 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 B \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{6 B \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}+\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 C \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Cos[c + d*x]^(9/2),x]

[Out]

(-6*B*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*C*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*B*Sin[c + d*x])/(5*d*Cos[c
 + d*x]^(5/2)) + (2*C*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (6*B*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 3010

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Dist[1/b, Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x
]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac{9}{2}}(c+d x)} \, dx &=\int \frac{B+C \cos (c+d x)}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=B \int \frac{1}{\cos ^{\frac{7}{2}}(c+d x)} \, dx+C \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 B \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 C \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{5} (3 B) \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx+\frac{1}{3} C \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 B \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 C \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 B \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}-\frac{1}{5} (3 B) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{6 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 C F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 B \sin (c+d x)}{5 d \cos ^{\frac{5}{2}}(c+d x)}+\frac{2 C \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 B \sin (c+d x)}{5 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.296194, size = 95, normalized size = 0.86 \[ \frac{9 B \sin (2 (c+d x))+6 B \tan (c+d x)-18 B \cos ^{\frac{3}{2}}(c+d x) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+10 C \sin (c+d x)+10 C \cos ^{\frac{3}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{15 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Cos[c + d*x]^(9/2),x]

[Out]

(-18*B*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*C*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 10*C
*Sin[c + d*x] + 9*B*Sin[2*(c + d*x)] + 6*B*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.352, size = 502, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/5*B/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*
c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-
12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2
*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*C*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)
^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*c
os(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/cos(d*x + c)^(9/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \cos \left (d x + c\right ) + B}{\cos \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c) + B)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/cos(d*x + c)^(9/2), x)